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Abstract of A Fast Image Matching Approach for Indoor Image

Localization

by Hongyi Fan, Sc.M., Brown University, May 2016

Localization is an important and challenging task for robots and wearable nav-

igation systems. In this paper, We present a multi-stage method using both local

and global feature of images.We use mid-layer output from convolutional neural net-

work(CNN) as a kind of general local feature to deal with the lacking feature prob-

lem. Also, CNN feature could grab more structural appearance-based information

than other local features(etc. SIFT, SURF). Such feature works well with hierarchi-

cal bag-of-features model. Several post-processing strategies is examined to lower the

ambiguity of the place location, include global features based re-ranking and geomet-

ric verification. We test such method on multiple different datasets, captured from

both robot-mounted camera and wearable camera. The proposed approach has been

integrated into an indoor vision-based wearable navigation system that can reach real

time performance in use.



CHAPTER 1

Introduction

1.1 Introuction. In navigation systems, while navigating in an environment, the

system should have the ability to recognize its current position. Multiple techniques

was widely used in localization problems, e.g. GPS, WiFi positioning and celling

positioning [1]. However, those techniques are hard to use in indoor environment

where GPS signal cannot reach, which constrain the use of robot platform or wearable

navigation system [2].

For indoor environment, a requirement for a wearable navigation system or a robot

platform is the ability to localize itself within a environment which prior structure

and layouts was known. Different traditional sensors was widely used in localization

techniques, e.g. laser and sonar [2]. Though they can achieve high precision, however,

due to high costs of the sensor and sensitivity to occlusions and moving objects, such

traditional sensors cannot be used for all the environment. Vision based systems have

gained focus recently for two mean reasons: (1) vision based system has lower cost

and more portable than laser or sonar, which potentially offers the ability to build

low cost wearable systems. (2) vision can provide more information than traditional

sensor readings: laser or other traditional sensors only provides us the basic geometric

informations of the environment, such limited information may provide ambiguity in

similar structures, e.g. the similar room layouts and sizes will be treated as the same

place [3]. With vision information, it is easy to input various information, includes

geometric, appearance and contextual informations.

For vision based navigation system, image localization means for each query im-

age, we can estimated the position in space, such position can be either 2D or 3D.

For robot or wearable navigation systems, 2D positioning is widely used. And for

quadcopters or other aerial vehicles, 3D positioning is more reliable. There are two
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main approaches in achieving this with vision: (1) the prior knowledge of environ-

ment is represented with a series of tagged images, the position was estimated by

retrieving the most similar image. This approach treats the position tag of the most

similar image as the position of query image [4], (2) the prior knowledge of envi-

ronment is represented with a 3D model [5]. Such model can be sparse or dense.

The query image was registered into this 3D model, the registered results is the po-

sition of the query image. Both approaches have their own pros and cons for indoor

image localization tasks. For the first type of method, the resolution of the result

highly depends on the resolution of the dataset. If there is an image which has a

very different view angle with the dataset, then the image localization will fail. One

the other hand, this type of approach is efficiency in memory, which makes it more

appropriate to scalable situation[6]. For the second type of methods, the prior map

was represented by 3D models of the environment, so the performance of the method

depends on the precision of the 3D models. It is possible to get a near precise 3D

model from numbers of image with the recent structure of motion(SfM) research[7],

then one can register the image into the 3D model. The common approach is to use

the feature descriptors(e.g. SIFT), for the 3D points computed during the structure

from motion reconstruction, formulating the correspondence as a keypoints matching

problem. Once the correspondences are established, the pose of the camera was ob-

tained by solving a perspective-n-points problem [8]. Such approach can reach high

precision. However, the performance depends on the correctness of the 3D model. For

outdoor environments, we always have enough keypoints to build a good 3D model

of urban area, but for indoor environment, multiple reasons can make reconstruction

fail: large homogeneous area(e.g. long hall way), image blurring(e.g. bad capturing)

or similar structure in environment(e.g. same posters in room or same room layouts).

Some sample images when structure from motion will fail are shown in Figure 1.1.

Experiments on 3D reconstructions on our dataset can be found in Chapter 4, which

is really bad. So for indoor image localization, we choose the approach which use

image dataset to represent the map.
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(a) (b)

(c) (d)

Figure 1.1. The sample images that will make SfM fail: (a) Image

blurring, (b) large homogeneous area, (c)&(d) similar layouts but in

different location.

In this work, we propose an approach that use multi-stage approach to retrieval

the most similar image in the dataset with geo-tagged position information. For the

dataset, a vocabulary tree [9] model was trained with the local deep feature from

datasets. Our approach uses deep features comes from the convolutional layers of

deep convolutional neural network(CNN)[10]. We do not set fully connected layers

after CNN because we want to preserve the localization information of features. Each

dataset image is indexed by term frequencyinverse document frequency (TF-IDF)

vectors [11, 12]. For each query image, the TF-IDF vectors representation is cal-

culated by sending the image’s deep feature into the same vocabulary tree. A list

of localization candidates can be obtained from comparing TF-IDF vectors. Due to

3



feature ambiguity, image blurring and other reasons, such localization result list may

not be fully satisfied. In our method, we examine multiple different strategies to re-

rank the result list in order to refine the final results. Two strategies are examined.

One is re-ranking with the global features of query image and dataset images. Lo-

cal features cannot represent the images fully. In bag-of-features model, the spatial

layouts of local features is not checked. So the global representation can grab the

information of the whole image. Two types of global features are examined: (1) gist

feature [13] and (2) deep feature after fully connected layer [10]. More than that,

Geometric verification approach is also examined in this paper. It tries to check the

scale change and the affine transformation between patches of images. To get the

best localization results, we need to select the smallest scaling and transformation as

the best localization results.

This paper is structured as follows. The related works will be discussed in the rest

part of this chapter. Chap. 2 explains the basic theory and methods conducted in this

thesis. In Chap. 3 we introduces the implementation detail of our approach. Chap.

4 shows the evaluation of our method in both robot roaming dataset and wearable

navigation system dataset. And the conclusions and future works are presented in

Chap. 5.

1.2 Related Works. The vision based image localization was received focus

recently. Bag-of-features model was widely used in this area, and achieved good

performance. Schindler et al. [14] firstly use vocabulary tree model [9], achieved a

scalable image localization system using a dataset with 30,000 images. They also an-

nounced the concept of ”informative features” which let the algorithm to use the very

distinctive features. [15] presents an approach that uses global likelihood and human

travel prior. FAB-MAP system[16], implemented an usable image localization and

loop detection for navigation for omnidirection camera using bag-of-features model

and Chow-Liu tree to learn distribution of bag-of-feature vectors. But bag-of-features

model ignores the spatial layouts of features. To solve that, Gálvez-López et al. [11]

also used bag-of-features model, but using binary descriptor to raise the temporal
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performance. Also, their work introduces the geometric verification strategy with

random sample consensus(RANSAC) approach, which preserve the spatial layouts

of the image. Also, repetitive feature points will influence the efficiency of TF-IDF

indexing. Torii et al. [17] detected repetitive features and modified the weights of

indexing to get rid of the negative effect of repetitive features. To enlarge the abil-

ity of Bag-of-features model, strategies was introduced into this field.[18] introduced

hamming embedding into large scale image retrieval method to get more precise vi-

sual words. Zamir et al. [4] uses graph model to unify the local features and global

features, treating the image localization problem as a optimization problem.

Approaches other than bag-of-features-based approaches were also presented. [1]

presents an approach using simple but effective feature voting scheme. And it has the

ability to process image sequence in real time. With the growth of SfM technique, it

is possible to get good reconstruction model of environment. [19, 5, 20] uses different

approaches to matching keypoints between query image and 3D models to register

camera into the world coordinate system. All these methods uses more disk spaces for

storage of models, which makes them not that useful for scalable environments. The

performances are also depend on the quality of reconstruction. Lacking of features

makes them not useful for indoor environments.

With the development of GPU computing and deep learning, convolutional neural

network(CNN) plays a important role in computer vision community. CNN repre-

sentation has achieved tremendous performance in scene recognition[21]. It shows

the ability to model the scene image into an compact representation, which could be

useful for image localization. Ali et al. [22] announced that the mid-layer output

of CNN can be treated as a kind of local features and descriptors, which gives the

potential to using CNN features in image localization task. With CNN, Lin et al. [23]

created a similar metric between ground image and aerial image to do localization.
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CHAPTER 2

Our Method

Our approach consists with 3 main parts: dataset preparation, query retrieval and

post processing. Dataset preparation indexing the whole dataset with a vocabulary

tree model. We feed each image in dataset into the convolutional neural network to

get global features and local features from neural network. Then build a vocabulary

tree to cluster all the features from dataset. All the centroids are indexed with TF-

IDF indexing strategy. The query image is also fed into the same network on the

air, then calculated the TF-IDF vector of query image. We can get a result list from

vocabulary tree model. The result list is refined by post processing. The procedures

of our method is shown in Figure 2.1.

Figure 2.1. The framework of proposed approach. The framework

consists with offline stage and online stage.

2.1 Deep Features from Convolutional Neural Network. Extracting local

features is critical in image retrieval and corresponding image localizations. Pre-

viously, SIFT, SURF and other keypoints and descriptors generation method were

used in extracting keypoints and the descriptors of the patches around keypoints.
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Such point-based descriptor is too local to describe the whole image. However, con-

volutional neural network(CNN) consists with several convolution layers in different

scales. The convolution layer has the view field which covers the whole image. So

there is less information loss than other point-based keypoints and descriptors.

The architecture of CNN contains multiple layers, such architecture is shown in

Figure 2.2. Convolutional layers consist of a series of filters. Each filters can be seen

as a neuron. Each filter takes inputs from a feature map of the previous layer; the

weights for each neuron(the convolutional filters) are the same in the convolutional

layer. After each convolutional layer, there may be a pooling layer. The pooling

layer takes small rectangular blocks from the convolutional layer and downsamples

it to produce a single output from that block. There are several ways to do this

pooling, such as taking the average or the maximum, or a learned linear combination

of the neurons in the block. Our pooling layers will always be max-pooling layers;

that is, they take the maximum of the block they are pooling. Finally, after several

convolutional and max pooling layers, the high-level reasoning in the neural network

is done via fully connected layers. A fully connected layer takes all neurons in the

previous layer (be it fully connected, pooling, or convolutional) and connects it to

every single neuron it has. Fully connected layers are not spatially located anymore

(outputs of fully connected layer is an one-dimensional vector), so there can be no

convolutional layers after a fully connected layer.

For recognition task, fully connected layer creates a conventional classifier to give

the score of each categories. But for our situation, each of our dataset image is one

category. It is impossible to have enough images to train a fully connected layer

for image localization considering about the data hungry property of CNN. So in

proposed approach, we treat pre-trained CNN as a general feature extractor. So the

proposed approach cancel the fully connected layer. The feature consists with the

responses from convolutional layer concatenating the response from same rectangular

area. Such feature corresponding one rectangular area from the original image, which

covers the whole image. The way to get one mid-layer feature is shown in Figure
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Figure 2.2. The architecture of a typical CNN with two covolutional

layers and two pooling layers. For lower layers, multiple convolution

layer and pooling layers are stacked together. The upper-layers are

fully connected layer implemented by conventional neural network. The

input to the first fully-connected layer is the set of all features maps at

the layer below. This figure comes from [24].

2.3. For lower level feature maps, the responses of pre-trained CNN are low level

features such as blobs, corners or edges. Those lower level features cannot represent

the difference between different images fully. The higher level features give us an

abstract, compact representation of each scene or position. In experiment part, we

examine the influence of extracting features from different convolutional layers.

Figure 2.3. The procedure to get each deep features. The responses

of a specific pooling layer from the same area are concatenate together

to build feature vectors.
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Extracting local features (keypoints and their descriptor vectors) has usually high

cost of computation in terms of computation time when comparing images. This is of-

ten the bottleneck when these kinds of techniques are applied in real time. Regularly,

binary features and descriptors(e.g. FAST keypoints [25] and BRIEF descriptors [26])

were used to make the feature extraction fast. Computing CNN features of an im-

age is expensive in CPU. But with the help of developed GPU computing technique,

one image feed into the network will take lower than 20ms. More discussion and

experiments on computing time will be presented in Chap. 4.

2.2 Bag of Features Model. The bag of words is a technique that uses a visual

vocabulary to index an image into a very sparse numerical vector, allowing us to deal

with scalable image set. The visual vocabulary is created offline by discretizing the

descriptor space into N visual words. In the case of the hierarchical bag of words,

the vocabulary is structured as a tree. To build it, we extract large amount of deep

features from images. The extracted deep features are firstly clustered into k clusters

by performing k-means or k-medians clustering. These clusters form the first level

of nodes in the vocabulary tree. Subsequent levels are created by repeating this

operation with the descriptors associated with each node, up to L times. We can

obtain W leaves, called visual words. Each word is given a weight according to its

relevance in the training corpus, decreasing the weight of those words which are very

frequent and, thus, less discriminative. For this, we use the term frequencyinverse

document frequency (TF-IDF). Term frequency(TF) represents the frequency of the

word appear in the image. Such weight is:

weighttf = 1 + log(Nw)

where wtf is the word weight based on TF, NW is the number of W th visual words

occur in one image. inverse document frequency(IDF) represens by:

weightidf = log(
N

|{w ∈ N}|
)
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where N is the number of image in the dataset, the denominator is the number of

images where the word w appears. The TF-IDF weight of the words can be obtained

as weighttf−idf = weighttf × weightidf . or a given query image, the deep features is

firstly extracted. Each feature is fed into the vocabulary tree. For each level of the

tree, the features feeds to the tree selecting the closest centroid that minimize the

Euclidean distance. The same minimization is done in each level of the tree. The

feature will be clustered into one leaves. After all the features in one image are all

clustered into corresponding words, one can obtain a sparse histogram of words. For

each sparse histogram, TF-IDF weights will be calculated for each words in one query

image. Then we get a vector of weights of words. That is the representation of one

image. The similarity between is measured by Euclidean distance between two sparse

vectors.

Figure 2.4. Example of vocabulary tree and direct and inverse in-

dexes that compose the image database. The vocabulary words are

the leaf nodes of the tree. The inverse index stores the weight of the

words in the images in which they appear. The direct index stores the

features of the images and their associated nodes at a certain level of

the vocabulary tree. This image comes from [11]

Other than bag of features model, An inverse index table are maintained in the

approach. The inverse index structure stores all the parents image of each word wi in

the vocabulary. Such structure has the ability to access the dataset images quickly.
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Similar to [11]. We extend the inverse index to store both image index and its weights

for corresponding words. Then one can give each image a score by their weights in

real time. This inverted index can be updated on the air by adding new images and

its features into the index structure. The architecture of two structures is shown in

Figure 5.

2.3 Post Processing. Bag of features model works fine with deep features. One

can get an initial result list. It can reaches a good performance. Post processing is

applied in the Top N candidates to eliminate false feature matches. There are two

main strategies to do post processing: one is verifying with global features, another

way is verifying geometric consistency. In this paper, we examine these two categories

of post processing methods.

2.3.1 Reranking with Global features. A global descriptor describes the whole im-

age. They are generally not very robust as a change in part of the image may cause

it to fail as it will effect the resulting descriptor. But our result list from previous

stage is good enough. So for eliminating false results, global features is a good choice

to eliminate results that is differ from query image. Two types of global descriptors

are examined in this paper: gist global descriptor and deep global descriptor from

CNN. Some samples of all these two global descriptors are shown in Figure 6. Once

the global descriptor is extracted, the Euclidean distance between query image and

images in result list can be used to re-rank the list.

Gist global descriptor, proposed by Oliva et al. [13], represents the dominant spa-

tial structure of a scene by modelling perceptual dimensions(e.g. naturalness, open-

ness, roughness, expansion and ruggedness). However, for indoor environment, those

perceptual dimensions may be the similar for different positions with same struc-

tural layouts(e.g. different hallway or different living room). More discussions and

experimental results will be shown in Section 5.

Deep features comes from the fully connect layer of a specific CNN, which use

a conventional neural network to compact all the feature maps from previous con-

volutional layers. The visualization of deep global features is shown in Fig.6(a). It
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(a) (b)

Figure 2.5. Examples of global features (a)Deep global features of

multiple images from fc7 layer in AlexNet. Each block is the global

feature of one image. This image comes from [21]. (b)Gist global

feature of one image.

shows that the deep global feature can grab a outline or a sketch of a scene to distin-

guish different positions. More discussions and experimental results will be shown in

Section 5.

2.3.2 Reranking with Geometric Verification. Bag of features model ignores the

spatial layouts of local features. That may generate false results. For two same

position, there should be now translation and scaling in spatial layouts of all the local

features. Previously, for keypoints, RANSAC was widely used for estimating the

translation and scaling between two different images. If the geometric transformation

is consistent, then it has a higher score. However, for local deep features, we don’t

have specific keypoints. So we cannot use RANSAC to estimate the transformation.

We estimate such transformation by using appearance, with the fast match method

proposed by Korman et al. [27].

Such method trying to minimize the optimization problem:

min
1

n2

∑
p∈I1

|I1(p)− I2(T (p))|

12



where I1 and I2 are two images, p is the point in two images, T is the affine trans-

formation, and n is the size of the image(we assume that the image is n-by-n). By

minimize the Sum-of-Absolute-Differences(SAD) error with respect to T , we can get

the affine transformation between one patch and one image. The searching space is

huge. But this method sampling the pixel space and the solution space to make the

algorithm efficiency. It is good for geometric verification since it is the only method

existed who can deal with arbitrary affine transformations. Some sample results of

this method is shown in Figure 7.

Figure 2.6. Example of one path and its corresponding matching

path in another image.

With this method, geometric verification is achieved as follows. For each query

image, similar to RANSAC, we pick several random image patch from query image.

For each image in top N of result list, we estimate translation between image patches

and candidate images. Once transformation is got. We firstly remove the image which

random patches have no translation consistency which means that the difference of

normal of translation vectors or rotation vector is larger than a threshold. After that,

the rest result list is re-ranked by the product of length of translation vector and

rotation vector. the effectiveness of such geometric verification will be discussed in

Chapter 4.
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CHAPTER 3

Implementation Details

In the implementation, we use pre-trained CNN model (called Place205-AlexNet)

trained with 2.5 millions of scene images [21]. It is the only CNN trained with scene

images, which is useful for image localization task. To get the local and global deep

features, we cancel the last recognition layer. The CNN we use has 5 convolutional

layers, and 2 fully convolutional layers. The input image will be resized into 227 ×

227 × 3. The first convolutional layer filters the input image with 96 kernels of size

11× 11× 3 with a stride of 4 pixels. The second convolutional layer takes the input

of previous layer, convoluted it with 256 kernel of size 5×5×96. There are two max-

pooling layers which follow the first and second convolutional layers, respectively. For

the third, fourth and fifth layers, there is no pooling layer in between, the kernel size of

all these three layers are all 5×5× Kernel numbers of previous layers. The kernel

number of these three layers are 384, 384 and 256 respectively. Two fully connected

layers all have 4096 neurons to convert the feature map into 1D descriptors. So for

each local feature from fifth convolutional layer, the size is 1× 256. For other layers,

the dimension of each local feature is their kernel numbers.

As for bag of features model, we implement hierarchy clustering by implementing

k-means algorithm along with the k-means++ initialization strategy [28]. For level of

the tree and clusters in different layers, we tried many different configurations. Then

we selected the best one with 9 levels which has 7 clusters in each level. In total we

have 79 = 40353607 visual words. The result list is truncated with soft threshold: the

result scores that lower than 90% of the highest score will be truncated. The final

result list will be sent to post processing block.

We implemented two schemes of post processing block: one with global feature

based reranking, another with geometric verification reranking. For global feature

14



based reranking, we need to obtain the nearest features in terms of query image.

k-d tree seems the best choice, but it faces dimension curse and also it will took a

long time to partition the space. In our case, linear search is a simple but effective

solution. For geometric verification scheme, considering about processing time, one

cannot select too many patches. We select only two randomly selected patches to do

geometric verification. It works smoothly on portable laptop computer. For the patch

size, fast match method announced that the bigger the patch, the faster it estimate

the transformation. So we select 80 % of original image as patch size which can deal

with zooming in and zooming out.
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CHAPTER 4

Experimental Results

In this section, we explain the numerical results of out method in different aspects.

This section is structured as follows: Sec. 4.1 introduce our experiment environment,

the datasets we used and the evaluation measurements. In Sec. 4.2, the experiment

results of bag of features and deep features is shown, along with the comparison with

different baselines and different parameter sets. In Sec. 4.3, different features from

different layers is examined. In Sec 4.4, two post processing schemes were checked.

4.1 Environment, Datasets and Measurements. We test this method on a

laptop with i7 2.5Ghz CPU, 16GB memory, and GeForce GTX 860M GPU with 6GB

graphic memory. Such laptop is very popular in market nowadays, which could be

widely used in robots and wearable systems.

We test this method on two different datasets. KTH-IDOL2 datasets is a dataset

for robot localization[29]. The image sequences were captured by a robot platform

roaming in the lab environment at KTH. The location tag is acquired by laser scans

and odometry technique. Each image sequence has near 1000 images and they all

covered the same indoor area in different time. In our experiments, we merged differ-

ent sequences into one big dataset which contains 10,382 images. And we use another

image sequence as test set which contains 917 images. In this dataset, the image size

is 320× 240. And images are captured with 5fps. Some sample images are shown in

Figure 4.1. And the roaming path of two paths are shown in Figure 4.2.

Another dataset we used is a dataset captured with wearable camera mounted on

a glasses. We captured this dataset in the lobby of Barus & Holly building at Brown

University. Unlike the smooth moving of a robot platform, the images captured

by wearable camera has more vibration and blurring due to non-smooth motion of

walking. Some sample images from this dataset is shown in Figure 4.3. In total, There
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Figure 4.1. Sample images from KTH-IDOL2 datasets. Same areas

at different times are shown.

Figure 4.2. The difference between robot path for two acquisi-

tions.They cover nearly the same area in the environment.This image

comes from [29].

are 52,910 images in the dataset, captured with 30fps. The test set is a sequence

contains 1442 images. The image size is 1280× 800. The location tag was measured

by recording the walking path of the person. Then the location tag is marked by

17



re-measure the keypoints on the path, e.g.start point, turning point and end points.

The localization tag is marked by interpolate the coordinates of all these keypoints

on the path.

Figure 4.3. Sample images from B&H dataset. The whole lobby is

covered by our dataset.

We treat location tag as ground truth. If the ground truth of the query image

is within 1 meter to the top N result in the result list. Then we say our image

localization is successful, since that the image within 1 meter is nearly the same for

indoor environment. The distances between two image are described by L2-norm

between two 2D position vectors.

4.2 Results of deep feature with bag of features model. We begin test on

KTH-IDOL2 dataset with only deep local features and bag of features model, without

any post processing strategy. We use deep local features from last convolutional layers,

conv5 layers. For comparison, we use the same bag-of-features with SURF feature as

one baseline of image localization task. The result of such results is shown in Figure

4.4.
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Figure 4.4. The comparison of the performance between our method

and baseline method. The horizontal axis is the Top N result candi-

dates. The vertical axis represents the percentage of queries which has

good matching.

As one can see from Figure 4.5, the performance of deep features and SURF

can all reach a good performance on this dataset. But deep features has a better

performance. If we only check the top candidate, the deep feature can reach more

than 95% precision, but SURF features can only reach 90.29%. Also, deep features

can reach 100% precision with top 15 images, in the mean time for SURF feature can’t

reach 100% precision with top 30 candidates. Then we check the position between

ground truth and the estimated position. Such result is shown in Figure 4.6.

As we mentioned before, the result is highly depend on the resolution of datasets.

If the path of datasets is not similar to the query set. Then the results will be really

bad. In this dataset, the roaming robot covers all the area of the building, so the

result is acceptable except there is small drift in some area, due to the difference

between query path and dataset path.
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Figure 4.5. The corresponding positions between ground truth and

estimated position. The unit of two axis is meter.

Table 4.1. The Error Distribution of Three Approach

Methods Mean Error Max Error Min Error

Proposed Method 0.4429m 15.2387m 0.0064m

SURF and BoF model 0.6549m 15.7392m 0.0042m

Sattler et al.[5] 0.1933m 5.2813m 0.0018m

Another baseline is Sattler’s 3D model based image localization method. The

dataset images are reconstructed into one sparse 3D model with VisualSfm software[30].

The 3D model created by VisualSfM is shown in Figure 4.7.

Such 3D model can correctly represent the spatial structure of the environment.

We can run Sattler’s image localization method on this 3D model as another baseline.

There is no candidate list in this method, we change the comparison from percentage

to average error distance between ground truth and estimated position. The compar-

ison of these methods are shown in Table 1. Here we use only top results from result

lists.
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Figure 4.6. Part of the 3D model generated from KTH-IDOL2

dataset. Such Model correctly represent the layout of sparse keypoint

and the positions of frames.

From the table above, the 3D model based localization approach has the best

performance compared with retrieval approach. It is normal based on what we have

introduced in Sec. 1. The precision of 3D based approach should be higher than

retrieval based approach. However, here is no post processing stage, the result with

post processing will be presented in Sec. 4.4. The experimental result of Barus &

Holley Lobby dataset is shown in Figure 4.8.

As we can see from the Figure 4.9, the performance of proposed method is still

better than SURF feature. Because of the size of images is larger than KTH-IDOL2
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Figure 4.7. The comparison of the performance between our method

and baseline method. The horizontal axis is the Top N result candi-

dates. The vertical axis represents the percentage of queries which has

good matching.

dataset, which makes images contain more information, the results of SURF features

become better compared with IDOL2 dataset. The reason why the curve cannot

reach 100% is that there are several images do not have corresponding ground truth

matching which within 1 meter from the query image.

For near homogeneous image, our proposed approach has a dramatic improvement

on those images. In Figure 4.10, we shown one near homogeneous image and its result

candidates with both SURF based and proposed approach.

Actually, there is no exact same image for such query image in the dataset, so

the method tend to search for the nearest image at that position. From Fig. 4.8, the

proposed approach returns the same homogeneous area(the same white wall). But

SURF based approach gives us some irrelevant results, which shows our method is

efficient.
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Query 1st 2nd 3rd 4th

Proposed

SURF

Figure 4.8. The result list with near homogeneous image.

Table 4.2. The running time comparison

Methods & image Size Mean Running time per Image

320× 240, SURF-based Method 0.96s

1280× 800, SURF-based Method 1.76s

320× 240, Proposed Method 0.65s

1280× 800, Proposed Method 0.67s

As for 3D model based method, we build 3D model with VisualSfM software, but

there are several homogeneous area. We cannot get a perfect 3D model. Such 3D

model is shown in Figure 16. In such figure, all the colorful pyramids are position

of cameras it estimated. This 3D model is bad, because of lack of features in some

images, the feature matching is not good enough,which makes the position estimation

fail. It shows that 3D model based localization method sometimes does not fit for

indoor environment image localization task.

As for time complexity, extracting local features is always time consuming, for

CPU computing, SIFT or SURF features will took more than half seconds. It is

not usable in real time. Even for GPU based SIFT, it also needs near 100ms for
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Figure 4.9. The bad reconstruction model of lobby of the Barus and

Holley building. All the points are space points, colorful pyramids

are estimated camera positions. Such model is really bad. Some of

the cameras are floating on the air, which is impossible. Also, lots of

cameras are in the wall.

extraction. But with CNN features, GPU has a good structure for such repetitive

convolution operation. So for feature extraction, CNN feature can be extracted in

20ms. Bag of feature retrieval take near the same time. So the proposed approach is

more efficiency than conventional methods. The running time comparison is shown

in Table 2. The proposed method is faster and can be used in real time.

4.3 Different features from different layers. In CNN, one have multiple

different convolutional layers, different layers have different feature map outputs.

Different outputs has different interpretations. Though the exact interpretations of

mid-layer output of CNN is not fully understand, we already have some vague under-

standing about middle layer feature maps. For the lower level layers, the lower level

features was detected, which trying to detect edges and blobs. The trained filters from

first convolutional layer is shown in Figure 4.10. And for the higer layers (e.g.fourth
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or fifth layers in AlexNet structure), it tends to grab the representation of abstract

representation of different training sets. Those several layers are task specific, so it

is hard to tell which layer perform the best in theory, due to not fully understand

of mid-layer feature maps. So to study which layer is the best for our method, we

Figure 4.10. The filter bank of first convolutional layer. These filters

detect edges and blobs.

select last 3 convolutional layers: conv5 and conv4. And we compare the performance

for each kind of features with KTH-IDOL2 dataset. The reason we did not use low

level layer is those edges and blobs is not efficient to retrieve exact same scenes. The

results of all these features is shown in Figure 4.11. From the results we can see that

the higher layer do performs better than lower layer. Especially with less candidates

results, the difference between results of conv4 is much lower than its counterparts.

But with more candidates results, two results tend to get the same results. In the

following experiments about post processing, we all use the result list generated from

conv5 layer.

4.4 Examination of post processing. The shown results expressed that CNN

feature maps can get a good localization performance along with the bag of features

model. However, we may got some false matching when only running deep feature
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Figure 4.11. The results of different layers.

based localization method. From the result of Sec. 4.2, we can see that for two

datasets, first stage will reach 100% precision within top 15 candidates. The scores of

those candidates are not less than 90% of top score, so we select the candidates whose

score is not less than 90% of top score in the same list. Some sample candidates list

are shown in Figure 4.12. From such figure, we also can see that our method has the

ability to deal with different illumination conditions in some level.

We examined two schemes for post processing stage. For KTH-IDOL2 dataset,

the results of applying global features to re-rank result list is shown in Figure 4.13.

From the figure, the post processing stage do improve the performance. Geometric

Verification has better performance due to its appearance based check. Since global

features compress the whole image into one single compact vector, the performance

is worse than geometric verification scheme. Meanwhile, CNN based global feature

and GIST global feature nearly has the same performance. But for top candidate,

CNN based features has better performances. A re-ranking result sample with CNN

global features is shown in Figure 4.14.
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Query 1st 2nd 3rd 4th

(a) bad good bad bad

(b) good bad bad bad

(c) bad good good good

Figure 4.12. Sample candidate lists from different positions.

Query(a) and Query(c) did not have good matching in top candidate,

but has good results in top 2. Meanwhile, Query(b) has a good match

in the top ranking.

In Fig. 4.13, the re-ranking involves 15 images. Some of the better results is

re-ranked to top results, which presents the efficiency of our scheme.

As for Barus & Holley Lobby dataset, we do the same experiments. In previous

experiment, we can see that our approach has the worse performance on this dataset

due to homogeneous area in the lobby area and blurring caused by walking vibration.

In this case, post processing is more critical and important. Some re-ranking results

from CNN global features of one image are shown in Figure 4.15. compared with

The comparison between different post processing method is shown in Figure

23. From such figure we still can see the same tendency with KTH-IDOL2 dataset.
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Figure 4.13. The experimental results of different post processing

schemes, comparing with the results without any post processing.

Query 1st 2nd 3rd 4th

Previous

Reranked

Figure 4.14. The result list before reranking and after reranking.

The geometric verification has the best performance. Global features has worse per-

formance but still has the appreciable improvement. From previous experiments,

geometric verification has the best performance, however, it has the largest running
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Query 1st 2nd 3rd 4th

Previous

Reranked

Figure 4.15. The result list before reranking and after reranking.

Figure 4.16. The experimental results of different post processing

schemes, comparing with the results without any post processing in

B&H dataset.

time, which make it not applicable in some high demand of running time condition.

The average running time of all the methods in shown in Table 4.3. Image localiza-

tion with geometric verification can rich 0.5Hz running frequency, and global CNN
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Table 4.3. Image Localization Methods Running Time

Methods & image Size Average Time per Image

320× 240, with Geometric Verification 1.52s

1280× 800, with Geometric Verification 1.98s

320× 240, with CNN re-ranking 0.85s

1280× 800, with CNN re-ranking 0.86s

320× 240, with GIST re-ranking 0.97s

1280× 800, with GIST re-ranking 1.12s

based re-ranking can rich more than 1Hz. Due to extracting one more features, GIST,

compared with CNN, has no benefits in running time. So, these two schemes, fast

matching based geometric verification and global CNN based re-ranking, can be used

in different conditions.
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CHAPTER 5

Conclusion
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