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Abstract

Photometric consistency is a key measure in establish-
ing correspondences among views of a scene in multi-
view stereo (MVS) surface reconstruction. The large cor-
respondence ambiguity in photometric consistency led to
the matching of local intensity patterns (e.g., using SIFT)
as candidate corresponding keypoints (e.g., Harris corners)
and this has formed a core technology for computing cam-
era pose and for 3D reconstruction. The reconstruction in
the form of an unorganized set of points and a resulting
mesh is generally excellent for a texture-rich area but gaps
remain in areas which lack features. Approaches for grow-
ing surface patches at 3D reconstruction points, such as
PMVS, alleviate smaller gaps to the extent that surfaces can
be extended. However, larger shaded areas lack features
and this weakens the photometric consistency cue needed
to establish dense correspondences. In this paper we in-
troduce a novel constraint, differential photometric consis-
tency, which constraints image gradients of one view from
image gradients of two other views at the corresponding
points. Similarly, image Hessians in one view are deter-
mined from image gradients and image Hessians in two
other views. It is shown that these additional constraints re-
duce correspondences ambiguity and should lead to robust
and more accurate reconstruction. In addition, we show
how the differential geometry of a surface patch can be
determined from image gradients at corresponding points
from two views: (i) The surface normal is determined from
image gradients in two views, and (ii) the second funda-
mental form of the surfaces can be determined from image
Hessians in two views. This is largely a theoretical paper,
but it is supported by some preliminary and illustrative ex-
periments.

1. Introduction
Multi-view stereo (MVS) is a key area in computer vi-

sion for the 3D reconstruction of scenes from a collection of
images or from video clips with a wide range of applications
such as engineering and scientific data analysis, reconstruc-

(a) (b)

Figure 1: This figure illustrates how the use of differen-
tial photometric consistency reduces ambiguity. (a) Sample
images used in experiment; (b) Three histogram represent
the degree of ambiguity by showing how many ambigu-
ous matches exist for each point under (i) photometric con-
sistency between two images, (ii) photometric consistency
among three images, and (iii) photometric and differential
photometric consistency among three images.

tion of urban scenes, video game industry, and film edit-
ing. The input images can come from photo collections of
known sites (e.g., tourist sites, urban scenes, etc.), multiple
cell phone images of a scene, simultaneous multi-camera
acquisition, and more recently from robots, drones or Mi-
cro Aerial Vehicles (MAVs). The accuracy of reconstruc-
tion has reached a point where MVS reconstruction can be
considered as a more affordable alternative to costly laser
scans. In general, the increased availability of collections
of photographs from a scene and an increasing number of
applications has led to significant progress in this area, but
in its general setting, MVS reconstruction remains an open
and challenging area.

Current MVS approaches can be generally grouped into
four types, based on the type of the underlying represen-
tation of 3D structures [11]. First, in voxel-based ap-
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(a) (b) (c) (d)

Figure 2: The sample results of ambiguity of correspondence and corresponding epipolar line. (a) The target pixel in the first
view. (b) The ambiguity in correspondence along the epipolar line using constraint (i). (c) The ambiguity in correspondence
along the epipolar line using constraint (ii). (d) The ambiguity in correspondence along the epipolar line using constraint
(iii). Constraints (i-iii) described in Section 4.2.

proaches, a bounding box is placed around the object and
discretized, thus determining the accuracy of the recon-
struction [10, 16, 12]. The location and size of the object
of interested has to be roughly known in this method. Sec-
ond, in the deformable surface approach, a surface model
in the form of a polygonal mesh, or level set, is initialized,
e.g. using a visual hull model, and then evolved to be op-
timally consistent with the data [1, 3]. Third, in the multi-
depth map approach, the scene is initially represented by
multiple depth maps for each viewpoint, and these are then
fused into a single mesh representation [5, 14]. Finally, in
the local surface patch method, object surfaces are initially
represented by an unorganized collection of surface patches
that are grown from corresponding features and these are
then joined to form a single mesh representation [8, 6, 4].
The first two methods place restrictions on the scene as the
objects need to be isolated and their initial location/size or
visual hull need to be easily computable. The latter two
methods are more generally applicable to more challenging
scenes with clutter, partial occlusion, and self-occlusion.

A key notion underlying these methods is to recognize
when a proposed reconstruction is consistent across pro-
jected views. A typical approach is to either project can-
didate point, patch, or volume elements onto various views
and measure the consistency of expected projected intensity
from the data or compare the consistency of putative corre-
spondences between two images. The computational mea-
sure of consistency is referred to as the photo-consistency
measure [11] which can be implemented in a number of
ways. This measure is based on the Lambertian surface as-
sumption, namely, that the observed intensities, or irradi-
ance values, are a product of the illumination flux reaching

the surface from the light source and albedo, but not a func-
tion of the viewing direction. As such, image points from
different views that correspond to the same surface point
should have the same intensity. Practically, a 3D point or
3D patch is consistent across views if the intensity variance
across projected pixels in different views is small [7]. Sim-
ilarly, an image point in view one that corresponds to an
image point in view two are photometrically consistent if
their intensity difference corresponds to image noise, moti-
vating measuring sum of squared differences (SSD) or nor-
malized cross correlation (NCC) between fixed windows
around candidate corresponding points [2, 13]. More gen-
eral reflection functions (BRDFs) have motivated a number
of new photo-consistency metrics [17, 15, 18].

The photometric consistency generates multiple ambigu-
ous matches. Thus it is generally a weak measure to es-
tablish dense correspondences. An alternative approach
to measuring consistency of projections is to compare the
patterns of intensities in two images around the candidate
corresponding points. This approach relies on feature de-
scriptors such as SIFT [9], which are typically insensitive
to intensity changes, to summarize the pattern at a point.
The correspondence and matching of isolated feature points
using such descriptors is a core technology for computing
pose between two views. The reconstruction at these iso-
lated points results in an unorganized set of 3D points which
can be joined to form a mesh, provided there is ample tex-
ture on the surface. A more recent development enables
reconstruction for surfaces whose texture is not necessarily
dense, by growing surface patches from reconstructed fea-
tures points [4]. This has led to the very popular PMVS
software. Unfortunately, the growth of a surface patch is
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Figure 3: The multiview camera setup. Several cameras (two shown) capture images of the same shaded surface. A gradient
in I1,∇I1 can be predicted from a gradient∇I2 by mapping it to the surface and projecting it onto I1. Conversely, the depth
gradient ∇ρ can be solved for from known corresponding gradients∇I1 and ∇I2.

limited and in texture-less areas PMVS is unable to gener-
ate a whole surface without leaving behind gaps. This moti-
vates an approach to deal with the reconstruction of shaded
areas.

Observe that the main difficulty in reconstructing
texture-less, shaded areas is the high level of ambiguity that
pairwise photometric consistency leaves behind: each point
in one image simply matches too many points, Figure 2(b).
The weakness of photometric consistency can be overcome
to some extent by enforcing trinocular geometry: each can-
didate pair of corresponding points in two images defines
a unique point in a third image, which is in turn expected
to be photometrically consistent with both points. This sig-
nificantly reduces ambiguity, as shown in Figure 2(c), but
this is not sufficient as a significant level of ambiguity re-
mains. In this paper we present a novel notion of differen-
tial photometric consistency, namely, that at a triplet of cor-
responding points across three images, the image intensity
gradient at two of three points, ∇I1 and ∇I2 uniquely de-
termine the third ∇I3. Enforcing this notion of first-order
”differential photometric consistency” reduces correspon-
dence ambiguity, Figure 2(d), which in turn should lead to
more robust reconstructions. We have also derived a differ-
ent second-order differential photometric where the image
intensity Hessian in two views HI1 and HI2 determine the
Hessian in a third view HI3 , although the use of second-
order derivatives faces numerical challenges in applications.

In addition to relating differentials photometic properties
in three views, we show that (i) The surface normal can be
obtained from the image intensity gradient at correspond-
ing projected points from two views, and (ii) The surface
second fundamental form (which gives principal curvatures
and principal directions) can be computed from the Hessian
of the image at corresponding points.

A brief summary of the paper is as follows: Consider

a smooth patch of surface in a scene with Lambertian re-
flectance and its projection to an arbitrary view. Observe
that the unknown surface depth in one view is a single di-
mension of variability whose knowledge determines the lo-
cation of the corresponding points in all other views. Thus,
two corresponding points in two views define surface depth,
which in turn defines all other projected points in other
views. Likewise, observe that the unknown surface depth
gradient, which defines the surface patch normal, is a two-
dimensional unknown whose knowledge determines the im-
age intensity gradient in all other views. Thus, we show that
the image intensity gradients at two corresponding points
define the surface depth gradient, or the surface normal, and
as such determine all intensity gradients in all other views.
This also holds for second order differentials: The Hessian
of the surface depth, which defines the surface second fun-
damental form (which defines surface principal curvatures),
is a three-dimensional unknown whose knowledge defines
the Hessian of intensities in any project view. Thus, the
Hessian of intensity at two corresponding points gives the
surface depth second fundamental form and in turn, deter-
mines the Hessian of intensities in all other views. We can
also state these in the form of first-order and second-order
differential photometric constrains between triplets of cor-
responding points. We posit that such constraints signif-
icantly reduce ambiguity when matching points in multi-
view stereo and while also giving a richer form of surface
geometry. We expect that these theoretical developments
can be employed in a PMVS-like growth of surfaces from
sparse point correspondences with the differential relations
enabling the growth of large surface patches and more accu-
rate reconstructions than current versions of PMVS. While
the intent of this theoretical paper is to communicate these
novel differential photometric constraints, we have done
some preliminary experiments. It is our plan to implement
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Table 1: Notation Table

Ii image i
γi point on image plane (in meter unit)

�γi point on image (in pixel unit)
(xi, yi) the two dimensional index into Ii in meter unit
(ξi, ηi) the two dimensional index into Ii in pixel unit
(Xi, Yi, Zi) coordinates in the ith camera frame in R3

φij the map taking a point in image 1 to its corresponding point in image 2
ρi the depth map R2 → R1 associating an image point to its R3 point
Γi the map R2 → R3 associating an image point to its R3 point
Ki the intrinsic camera matrix associated with image i
Rij a rotation matrix from the frame Bi to frame Bj

Tij a translation vector from the frame Bi to frame Bj

Λij The mapping from one image frame i to image frame j
Πi the perspective projection operator from the world frame of R3 onto the image plane Pi

a MVS reconstruction based on this idea in the near future.

2. First Order Analysis: From a Pair of Image
Intensity Differentials to Surface Gradient

We consider N cameras viewing a scene containing a
surface patch S ∈ R3, as in Figure 3. Given a point Γ ∈
S, define Γi = (Xi, Yi, Zi) to be the coordinates in the
coordinate frame of camera i, i = 1, 2, ...N . Let Ii denote
the image obtained from camera i. The coordinates of two
cameras are related by

Γj = RijΓi + Tij , (1)

whereRij is a rotation matrix and Tij is the translation vec-
tor from camera i to camera j. We use shorthand notation
Λij to denote this mapping: Λij(Γi) = Γj .

The projection of the point Γ onto the image plane
of camera i is denoted by Πi(Γi) = γi, where γTi =
(xi, yi, 1). Here, xi and yi are the image coordinates in
meters and we assume the normalized focal length of the
camera is 1. This gives

Γi = ρiγi, (2)

where ρi is the depth of Γi in camera i. We also need to
express the projected point in pixel units since our images
are matrices of pixels. Let �γi = (ξi, ηi, 1) where ξi and
ηi are the horizontal and vertical image coordinates of the
projected point in pixels. These two representations of the
projected point are related by the calibration matrix Ki,

�γi = Kiγi,

ξiηi
1

 = Ki

xiyi
1

 , (3)

Ki =

F xi 0 µi
0 F yi νi
0 0 1

 , K−1i =


1
Fxi

0 − µi
Fxi

0 1
Fyi

− νi
Fyi

0 0 1


(4)

where F xi and F yi are the pixel width and height in units of
focal length, and (µi, νi) are the coordinates of the principal
point in pixels, i.e., the footpoint of the camera center ci
onto the image plane Pi.

The Differential Photometric Constraint: The traditional
constraint for finding the correspondence between a point in
one camera and a point in another is the photometric con-
straint, which states that given a Lambertian surface, the
intensity at corresponding points �γ1 and �γ2 are identical:

Ij(�γ2) = Ii(�γ1). (5)

Let the correspondence mapping between �γ1 and �γ2 be de-
fined as φ12:

�γ2 = φ12(�γ1). (6)

This mapping is mediated by the surface S since �γ1 and �γ2
arise from a common surface point Γ. More specifically, �γ1
maps to γ1, γ1 maps to Γ1, Γ1 becomes Γ2 under a change
of basis, Γ2 projects to γ2, which gives �γ2 in pixel units:

�γ2 = φ12(�γ1) = K2

(
Π2

(
Λ12

(
Γ1

(
K−11 (�γ1)

))))
, (7)

where Γi(·) is the mapping of γi to Γ1 and Π2 is the
projection of Γ2 to γ2.

A comment on notation: the image Ii is usually con-
sidered a mapping R2 → R. In this analysis, we will
conveniently treat Ii : R3 → R to keep all the matrices a
fixed size of 3× 3. The intensity at pixel location (ξi, ηi) is
given by Ii(�γi) where �γi = {ξi, ηi, 1}.

Our key question is how the intensity gradient ∇IT2 =
(∂I2∂ξ2

, ∂I2∂η2
, 0) is related to the intensity gradient ∇IT1 =

(∂I1∂ξ1
, ∂I1∂η1

, 0). If we assume that S is smooth and that Γ
is not on an occluding contour, the photometric constraint
will hold at every point in neighborhoods �γ1 ∈ Ω1 ⊂ P1

4
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and �γ2 ∈ Ω2 ⊂ P2. We can rewrite Equation 5 as

I2(φ12(�γ1)) = I1(�γ1), (8)

A change in �γ1, d�γ1, thus induces a change dI1 in image
1 and dI2 in image 2 that are related via the chain rule:

dI2 ◦ dφ12(d�γ1) = dI1(d�γ1). (9)

Equivalently:

∇I2 dφ12 = ∇I1. (10)

Thus, to compare intensity gradients across images, we
must solve for dφij , where φij is defined in Equation 7.

Proposition 2.1. The image gradients at tow corresponding
points �γi and �γj from calibrated cameras i and j can be
related if the depth ρi and ρj and normalized depth gradient
∇ρi
rhoi

are given, specially,

∇I1 = dφ12∇I2. (11)

The expression for dφij is dKj ◦ dΠj ◦ dΛij ◦ dΓi ◦ dK−1i .
It can be explicitly reduced to

dφij =
ρi
ρj

F xj 0 −(ξj − µj)
0 F yj −(ηj − νj)
0 0 0

Rij


1
Fxi

0 0

0 1
Fyi

0

0 0 0


(12)

+
ρi
ρj

F xj 0 −(ξj − µj)
0 F yj −(ηj − νj)
0 0 0

Rij

ξi−µi
Fxi
ηi−νi
Fyi
1


1

ρi

[
∂ρi
∂ξi

∂ρi
∂ηi

0
]
.

Proof. We differentiate Equation 7, yielding

dφ12 = dKj ◦ dΠj ◦ dΛij ◦ dΓi ◦ dK−1i (13)

Each differential mapping can be represented by a Jacobian
matrix which we calculate below.
The differential of Ki and K−1i : Using Equation 4, the
mapping is Ki defined as

Ki

xiyi
1

 =

F xi xi + µi
F yi yi + νi

1

 (14)

Thus, its Jacobian and inverse Jacobian are:

dKi =

F xi 0 0
0 F yi 0
0 0 0

 , dK−1i =


1
Fxi

0 0

0 1
Fyi

0

0 0 0


(15)

The differential of Γi: Using Equation 2, Γi(·) is the map-
ping of γi to Γ1:

Γi

xiyi
1

 =

ρixiρiyi
ρi

 . (16)

Its Jacobian is:

dΓi =


∂ρi
∂xi

xi + ρi
∂ρi
∂yi

xi 0
∂ρi
∂xi

yi
∂ρi
∂yi

yi + ρi 0
∂ρi
∂xi

∂ρi
∂yi

0

 (17)

= ρi

1 0 0
0 1 0
0 0 0

+

xiyi
1

[ ∂ρi
∂xi

∂ρi
∂yi

0
]

= ρi

1 0 0
0 1 0
0 0 0

+K−1i

ξiηi
1

[∂ρi
∂ξi

∂ρi
∂ηi

0
]
dKi.

The differential of Λij: Using Equation 1, the mapping
Λij is defined as

Λij

Xi

Yi
Zi

 = Rij

Xi

Yi
Zi

+ Tij . (18)

Its Jacobian is

dΛij = Rij . (19)

The differential of Πi: Πi is the projection of Γi to γi:

Πi

Xi

Yi
Zi

 =

XiZiYi
Zi
1

 . (20)

Its Jacobian is simplified using

Xi

Yi
Zi

 = ρi

xiyi
1

 and �γi =

K−1i γi:

dΠi =


1
Zi

0 −Xi
Z2
i

0 1
Zi
− Yi
Z2
i

0 0 0

 =
1

ρi

1 0 − ξi−µiFi

0 1 −ηi−νiFi
0 0 0

 . (21)

The differential of dφij: Combining the previous expres-
sions, we get:

dφij =
ρi
ρj

F xj 0 −(ξj − µj)
0 F yj −(ηj − νj)
0 0 0

Rij


1
Fxi

0 0

0 1
Fyi

0

0 0 0


(22)

+
ρi
ρj

F xj 0 −(ξj − µj)
0 F yj −(ηj − νj)
0 0 0

Rij

ξi−µi
Fxi
ηi−νi
Fyi
1


1

ρi

[
∂ρi
∂ξi

∂ρi
∂ηi

0
]

5
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We have thus derived the constraint of intensity gradi-
ents among two images, shown in Equation 13. The only
unknown involved in the constraint is the depth gradient:

∇ρTi = (
∂ρi
∂ξi

,
∂ρi
∂ηi

) (23)

With two images, one can only solve for this depth gra-
dient. A third image allows us to verify whether that depth
gradient is plausible. Thus, as described below, one needs a
triplet of intensity gradients to decide if the first order image
neighborhoods of three corresponding points are consistent.
Three Images Model: Consider three calibrated images,
Ii, Ij and Ik containing three corresponding points, denoted
by �γi, �γj and �γk.

Proposition 2.2. The image gradients at corresponding
points �γi, �γj and �γk from three calibrated cameras i, j,
k need to satisfy the following constraint.

∇Ii = ∇Ik

(
ρi
ρk

F xk 0 −(ξk − µk)
0 F yk −(ηk − νk)
0 0 0

Ri,k


1
Fxi

0 0

0 1
Fyi

0

0 0 0


(24)

+
ρi
ρk

F xk 0 −(ξk − µk)
0 F yk −(ηk − νk)
0 0 0

Ri,k

ξi−µi
Fxi
ηi−νi
Fyi
1


1

ρi

[
∂ρi
∂ξi

∂ρi
∂ηi

0
])

,

where

1

ρi

[
∂ρi
∂ξi

∂ρi
∂ηi

0
]

= (25)

ρj
ρi
∇Ii −∇Ij

F xj 0 −(ξj − µj)
0 F yj −(ηj − νj)
0 0 0

Ri,j


1
Fxi

0 0

0 1
Fyi

0

0 0 0


∇Ij

F xj 0 −(ξj − µj)
0 F yj −(ηj − νj)
0 0 0

Ri,j

ξi−µi
Fxi
ηi−νi
Fyi
1


Proof. Using Equation 10 on each pair of images, we obtain
a system of two equations:{

∇I2 dφ12 = ∇I1
∇I3 dφ13 = ∇I1

(26)

Solve for 1
ρi

[
∂ρi
∂ξi

∂ρi
∂ηi

0
]

from the first of these equa-
tions, getting Equation 25. The second of these equations
can then be expressed as Equation 24 with this substitution.

�
From this corollary, we see that the intensity gradient

in the third image is predicted from the intensity gradients,
calibration parameters, and depth ratios ρi

ρj
, ρiρk in the other

two images. We now compute those depth ratios.
Calculation of depth ratio ρi

ρj
: Starting with the 3D point

transformation:

ρjγj = ρiRijγi + Tij (27)

Take the cross product with Tmn on both sides,

ρj(γj × Tij) = ρi(Rijγi × Tij) (28)

If the corresponding points exactly satisfy epipolar con-
straints, then the two vectors (γj × Tij) and (Rijγi × Tij)
are proportional. (In practice, these values will be close to
proportional.) We solve for the depth ratio

ρi
ρj

(Rijγi × Tij) = (γj × Tij) (29)

So the ratio can be solved by minimize the following opti-
mization problem:

ρi
ρj

|| ρi
ρj

(Rijγi × Tij)− (γj × Tij)|| (30)

The solution of this problem is

rij =
ρi
ρj

=
a1b1 + a2b2 + a3b3

a21 + a22 + a23
(31)

where (Rijγi × Tij) = [a1, a2, a3]T and (γj × Tij) =
[b1, b2, b3]T .

3. Second Order Analysis
We now repeat the above analysis in the second order

case. We consider local image information up to second
order (Hessians) and show a pair of image neighborhoods
in two separate images implies the depth Hessian.

Theorem 3.1. Let I1(ξ1, η1) and I2(ξ2, η2) be two images
of the same smooth surface S with depth function ρ. For
any pair of corresponding points γ1 ∈ I1, γ2 ∈ I2, there
is a map Ψ̄ that calculates the Hessian of ρ from the image
gradients ∇I1,∇I2 and image Hessians HI1 , HI2 :

Ψ̄1,2 : R2 × R2 × R2×2 × R2×2 → R2×2 (32)
Ψ̄1,2(∇I1,∇I2, HI1 , HI2) = Hρ (33)

Similarly, we will have the corresponding corollary as
before.

Corollary 3.1. One can also predict the Hessian in the third
image from the 2nd order expansion in the first two images.
There exists a χ̄1,2 : R2 × R2 × R2×2 × R2×2 → R2×2

χ̄1,2(∇I1,∇I2, HI1 , HI2) = HI3 (34)
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Sketch of proof of Theorem 3.1. The full proof is included
in the supplementary material. Here, we just show plau-
sibility. We take Equation ?? and regarding it as a linear
equation on the vector fields (∇I1 and ∇I2), we can differ-
entiate it again with respect to ξ1. (η1 is analogous.) Note
that the basis of each matrix does not change with respect to
the differentiation variable, so we can apply a product rule
for matrices. We show the derivation for the first row of the
Hessian. Let Dξ1(·) represent the differentiation operator
w.r.t ξ1:(

I1,ξ1ξ1
I1,ξ1η1

)
= Dξ1 (∇I1) (35)

= Dξ1

(
dK2 · dΠ2 · dR · dΓ1 · dK−11

)
∇I2

+M12Dξ1 (∇I2) (36)

We now analyze each of the two terms Dξ1(dK2 · dΠ2 ·
dR · dΓ1 · dK−11 ) and Dξ1(∇I2).

Dξ1(dK2 · dΠ2 · dR · dΓ1 · dK−11 ) (37)

= dK2 · dΠ2 · dR ·Dξ1(dΓ1) · dK−11

+ dK2 ·Dξ1(dΠ2) · dR · dΓ1 · dK−11 (38)

The other terms resulting from the product rule are 0,
since the other matrices are constant. Note that Dξ1(dΓ1)
is a linear function of the second order depth derivatives
{ρξξ, ρξη} of the surface. Also, note that Dξ1(dΠ2) is
nonzero but known from the 3D world position of point s.
Thus, the terms 38 can be separated into known quantities
and a known matrix multiplied by the second derivatives(
ρξξ ρξη

)
.

To calculate Dξ1(∇I2), we can split it into two com-
ponents of ∇I2. Consider the first component Dξ1(I2,ξ2)
This is simply a directional derivative of a scalar quan-
tity, but we have to be careful with the direction! Writing

~w1 = M12

[
1
0

]
, which can be calculated from the first order

analysis, then:

Dξ1(I2,ξ2) = ~w ·
[
I2,ξ2ξ2
I2,ξ2η2

]
(39)

Thus,

Dξ1(∇I2) = ~w1
T

[
I2,ξ2ξ2 I2,ξ2η2
I2,ξ2η2 I2,η2η2

]
(40)

= ~w1
THI2 (41)

where HI2 is the second image Hessian. Substituting
Equations 38 and 41 into 36, we find two equations consist-
ing of known quantities and a linear function of

[
ρξξ ρξη

]
.

Thus, the variables ρξξ and ρξη are solvable from the image
Hessians.

The proof of Corollary 3.1 is very similar to Corollary 2.2.
Once the second order depth variables {ρξξ, ρξη, ρηη} are
known, the third image Hessian can be computed from
pulling the first image Hessian up to the third order surface
neighborhood and then projecting it down into P3.

4. Experiments and Illustrative Examples
A Theoretical Experiment To experimentally verify the
analysis and especially Equation ??, we constructed sym-
bolic depth maps imaging the same surface from different
views. See Figure 4. We set ρ1(ξ1, η1) = ξ1 +η1 on the do-
main ξ1, η1 > 0 and then chose a second view direction 45
degrees offset and solved for ρ2(ξ2, η2) by inverting Equa-
tion ??. (We chose this simple function for ρ1 so that this
inversion can be done symbolically in Mathematica.) These
two depth maps are shown in the first row of Figure 4. Note
that ρ2 is not linear. We then lit the surface with a sin-
gle light source and found symbolic expressions for the two
Lambertian images corresponding to the two views. This
images are shown in the second row of Figure 4.

By having symbolic expressions for both the depth
maps and shaded images, we were able to compute every
differential matrix in Section 2 precisely at any point.
(Compare to Figure ?? where the matrices were prone to
error due to noisy image derivatives.) In particular, we
checked that Equation ?? held up to machine error preci-
sion. A Practical Experiment In this set of experiments,

Figure 4: Top row, left: A planar depth map ρ1. Top row,
right: A parametrically defined depth map ρ2 corresponding
to the same surface and a shifted camera pose. Bottom row:
A local image 1 patch constructed from imaging the surface
described by ρ1 (left) mapped exactly to a local image 2
patch (right) under a computed M12.

the effectiveness of differential photometric consistency
in reducing the ambiguity of the correspondence was
examined. Specifically, three views of the same scene are
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selected from a calibrated dataset, Figure 1(a). We used an
image from the Middlebury dataset [11]. Three different
constraints are used to generate the correspondences:
(i) Pairwise photometric consistency: for each point in
the first view, all points lying on the corresponding epipolar
line in the second image whose intensity difference was
within a threshold τ1 were found. (We used τ1 = 15.)
The size of the set composed of such points represents the
degree of ambiguity in finding the true correspondence.
This is done for all points in the first views and a histogram
of frequency vs. size of ambiguity is shown as the green
histogram in Figure 1(b); (ii) Trinocular photometric
consistency: for each point in the first image, and for each
candidate match in the second image, a corresponding
point in a third image is computed by intersection of the
corresponding epipolar lines. In addition, for each triplet of
points, the pairwise photometric constraint is enforced by
requiring the intensity difference between any of the three
pairs of points to be within the threshold τ1. The size of the
remaining set represents the degree of ambiguity as shown
in the cyan histogram of Figure 1(b); (iii) Trinocular
photometric consistency and differential photometric
consistency: For each triplet satisfying the condition of
constraints represented in (ii), we also enforced a differ-
ential photometric constraint, represented in Equation ??,
among the three gradients; namely, the predicted gradient
in the first image (using gradients in the second and thrid
images) and actual gradient should lie within a threshold
τ2. (We used τ2 = 50.) The size of the remaining set is
the degree of ambiguity as shown in the blue histogram of
Figure 1(b). Observe that (a) the histogram using constraint
(iii) has less ambiguity than (ii) which is in turn better than
(i), and (b) the average ambiguity drops by using constraint
(iii) vs. (ii) which in turn is better than (i).

This process can also be illustrated on an exemplar point
shown in Figure 2(a) as a cyan cross. The set of all matches
satisfying constraints (i), (ii) and (iii) are shown as red
crosses in Figure 2(b), (c) and (d), respectively. Observe
how the numerous matches satisfying constraint (i), averag-
ing 11.98 per pixel, are reduced in number as constraint (ii)
is applied, averaging 2.55 per pixel. The number of matches
is reduced even further by enforcing constraint (iii), result-
ing in 1.82 matches per pixel.

5. Conclusion
In this paper, we introduced differential photometric con-

sistency so the image gradient in one view can be uniquely
determined by two other views in the context of multiview
stereo. Preliminary experiments verified the correctness of
the theory and showed the effectiveness in reducing the
degree of ambiguity of correspondence. In addition, we
also described second-order differential photometric con-

sistency which denotes the analogous map defining the im-
age Hessian in the third view from a pair of Hessians in
other views. These additional photometric constraints re-
duce the ambiguity associated with multiview stereo, which
is especially relevant when viewing smoothly shaded sur-
faces.
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